Experimental vs. Theoretical Probability

Theoretical Probability - What should happen in theory (This is what we've been doing all along) Example: What's the Probability of flipping tails on coin? P (tails) $=1 / 2$ or 50%

Experimental Probability - What actually happens when you conduct an experiment Example: You flip a coin 100 times and it lands on tails 40 times P (tails) $=\frac{40}{100}=\frac{2}{5}$ or $40 \% \quad$ (you actually flipped a coin)

Compare the theoretical probability to the experimental probability

I should have gotten tails 50% of the time, but I actually flipped tails 40% of the time. I got tails less than expected.
**YOU WILL NOW COMPLETE YOUR OWN EXPERIMENT USING the website: https://wheeldecide.com/

Steps:

1. Click Modify Wheel (you'll need to scroll down)
2. Type the following colors:

- Blue
- Yellow

3. Click Apply Wheel Changes

- Red
- Green

Name \qquad Math \qquad Period \qquad
\qquad
Experimental vs. Theoretical WS

1. What is the theoretical probability of each color? Write your answer as a fraction in simplest for AND a percent.

P(Blue) \qquad P(Yellow) \qquad

P(Red) \qquad P(Green) \qquad
2. Predict what color you will spin the most. \qquad
3. Is this a fair spinner? Why or why not? \qquad
\qquad
\qquad
4. Spin the wheel 40 times and record your outcomes in the table below (use tallies)

Blue	Yellow	Red	Green

5. What was the experimental probability of each color? Write as a fraction in simplest form AND as a percent. (Remember you spun the spinner 40 times, so that is your denominator)

Blue \qquad Yellow \qquad

Red \qquad Green \qquad
6. Is what you thought would happen, what actually happened? \qquad
7. Why is the theoretical probability different from the experimental probability? \qquad
\qquad
\qquad

